- Fast Response Times
- Strobe Capability
- Maximum Input Bias Current . . . 300 nA
- Maximum Input Offset Current . . . 70 nA
LM111 . . . JG PACKAGE
LM211 . . D, P, OR PW PACKAGE
LM311 . . D, P, PS, OR PW PACKAGE
(TOP VIEW)
EMIT OUT
- Can Operate From Single 5-V Supply
- Available in Q-Temp Automotive
- High-Reliability Automotive Applications
- Configuration Control/Print Support
- Qualification to Automotive Standards

NC - No internal connection

description/ordering information

The LM111, LM211, and LM311 are single high-speed voltage comparators. These devices are designed to operate from a wide range of power-supply voltages, including $\pm 15-\mathrm{V}$ supplies for operational amplifiers and $5-\mathrm{V}$ supplies for logic systems. The output levels are compatible with most TTL and MOS circuits. These comparators are capable of driving lamps or relays and switching voltages up to 50 V at 50 mA . All inputs and outputs can be isolated from system ground. The outputs can drive loads referenced to ground, $\mathrm{V}_{\mathrm{CC}}+$ or V_{Cc} Offset balancing and strobe capabilities are available, and the outputs can be wire-OR connected. If the strobe is low, the output is in the off state, regardless of the differential input.
description/ordering information
ORDERING INFORMATION

T_{A}	V_{IO} max AT $25^{\circ} \mathrm{C}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	7.5 mV	PDIP (P)	Tube of 50	LM311P	LM311P
		SOIC (D)	Tube of 75	LM311D	LM311
			Reel of 2500	LM311DR	
		SOP (PS)	Reel of 2000	LM311PSR	L311
		TSSOP (PW)	Reel of 150	LM311PW	L311
			Tube of 2000	LM311PWR	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	3 mV	PDIP (P)	Tube of 50	LM211P	LM211P
		SOIC (D)	Tube of 75	LM211D	LM211
			Reel of 2500	LM211DR	
		TSSOP (PW)	Reel of 150	LM211PW	L211
			Reel of 2000	LM211PWR	
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	3 mV	SOIC (D)	Tube of 75	LM211QD	LM211Q
			Reel of 2500	LM211QDR	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	3 mV	CDIP (JG)	Tube of 50	LM111JG	LM111JG
		LCCC (FK)	Tube of 55	LM111FK	LM111FK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
functional block diagram

schematic

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage: V_{CC} (see Note 1) 18 V
$V_{\text {CC- }}$ (see Note 1) -18 V
$\mathrm{V}_{\mathrm{CC}+}-\mathrm{V}_{\mathrm{CC}-}$ 36 V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Note 2) ± 30 V
Input voltage, V_{1} (either input, see Notes 1 and 3) ± 15 V
Voltage from emitter output to V_{CC} - 30 V
Voltage from collector output to V CC_: $^{\text {LM111 }}$ 50 V
LM211 50 V
LM211Q 50 V
LM311 40 V
Duration of output short circuit (see Note 4) 10 s
Package thermal impedance, θ_{JA} (see Notes 5 and 6): D package $97^{\circ} \mathrm{C} / \mathrm{W}$
P package $85^{\circ} \mathrm{C} / \mathrm{W}$
PS package $95^{\circ} \mathrm{C} / \mathrm{W}$
PW package $149^{\circ} \mathrm{C} / \mathrm{W}$
Package thermal impedance, θ_{JC} (see Notes 7 and 8): FK package $5.61^{\circ} \mathrm{C} / \mathrm{W}$
JG package $14.5^{\circ} \mathrm{C} / \mathrm{W}$
Operating virtual junction temperature, T_{J} $150^{\circ} \mathrm{C}$
Case temperature for 60 seconds: FK package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds: J or JG package $300^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 60 seconds: D, P, PS, or PW package $260^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between $\mathrm{V}_{\mathrm{C}}+$ and V_{CC}.
2. Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or $\pm 15 \mathrm{~V}$, whichever is less.
4. The output may be shorted to ground or either power supply.
5. Maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
6. The package thermal impedance is calculated in accordance with JESD 51-7.
7. Maximum power dissipation is a function of $T_{J}(\max), \theta_{J C}$, and T_{C}. The maximum allowable power dissipation at any allowable case temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{J}}(\max)-T_{\mathrm{C}}\right) / \theta_{\mathrm{JC}}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
8. The package thermal impedance is calculated in accordance with MIL-STD-883.

recommended operating conditions

			MIN	MAX	UNIT
$\mathrm{V}_{\mathrm{CC}+}-\mathrm{V}_{\mathrm{CC}-}$	Supply voltage		3.5	30	V
V_{1}	Input voltage ($\mathrm{V}_{\mathrm{CC} \pm}$ \| $\leq 15 \mathrm{~V}$)		$\mathrm{V}_{\text {CC-+ }}$ + 5	$\mathrm{V}_{\mathrm{CC}+}{ }^{-1.5}$	V
		LM111	-55	125	
TA	Op	LM211	-40	85	C
${ }_{\text {A }}$	enating free-ar temperakure range	LM211Q	-40	125	
		LM311	0	70	

SLCS007H - SEPTEMBER 1973 - REVISED AUGUST 2003
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\begin{aligned} & \hline \text { LM111 } \\ & \text { LM211 } \\ & \text { LM211Q } \end{aligned}$			LM311			UNIT		
		MIN	TYP \ddagger		MAX	MIN	TYP \ddagger	MAX					
VIO	Input offset voltage			See Note 6		$25^{\circ} \mathrm{C}$		0.7	3		2	7.5	mV
		Full range					4			10			
10	Input offset current	See Note 6		$25^{\circ} \mathrm{C}$		4	10		6	50	nA		
				Full range			20			70			
IIB	Input bias current	V O $=1 \mathrm{~V}$ to 14 V		$25^{\circ} \mathrm{C}$		75	100		100	250	nA		
				Full range			150			300			
ILL(S)	Low-level strobe current (see Note 7)	$\mathrm{V}_{\text {(strobe) }}=0.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{ID}} \leq-10 \mathrm{mV}$	$25^{\circ} \mathrm{C}$		-3			-3		mA		
VICR	Common-mode input voltage range			Full range	$\begin{array}{r} 13 \\ \text { to } \\ -14.5 \end{array}$	$\begin{array}{r} 13.8 \\ \text { to } \\ -14.7 \end{array}$		$\begin{array}{r\|} 13 \\ \text { to } \\ -14.5 \end{array}$	$\begin{array}{r} 13.8 \\ \text { to } \\ -14.7 \end{array}$		V		
AVD	Large-signal differential voltage amplification	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ to 35 V ,	$R_{L}=1 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	40	200		40	200		V/mV		
IOH	High-level (collector) output leakage current	$\begin{aligned} & \begin{array}{l} (\text { strobe })=-3 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{ID}}=5 \mathrm{mV} \end{array} \end{aligned}$		$25^{\circ} \mathrm{C}$		0.2	10				nA		
				Full range			0.5				$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{ID}}=5 \mathrm{mV}$,	$\mathrm{V}_{\mathrm{OH}}=35 \mathrm{~V}$	$25^{\circ} \mathrm{C}$					0.2	50	nA		
VOL	Low-level (collector-to-emitter) output voltage	$\mathrm{IOL}=50 \mathrm{~mA}$	$\mathrm{V}_{\text {ID }}=-5 \mathrm{mV}$	$25^{\circ} \mathrm{C}$		0.75	1.5				V		
			$\mathrm{V}_{\text {ID }}=-10 \mathrm{mV}$	$25^{\circ} \mathrm{C}$					0.75	1.5			
		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}+}=4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}-=0, \\ \mathrm{IOL}=8 \mathrm{~mA} \\ \hline \end{array}$	$\mathrm{V}_{\text {ID }}=-6 \mathrm{mV}$	Full range		0.23	0.4						
			$\mathrm{V}_{\text {ID }}=-10 \mathrm{mV}$	Full range					0.23	0.4			
${ }^{\text {ICC }}+$	Supply current from $\mathrm{V}_{\mathrm{CC}}+$, output low	$\mathrm{V}_{\mathrm{ID}}=-10 \mathrm{mV}$,	No load	$25^{\circ} \mathrm{C}$		5.1	6		5.1	7.5	mA		
${ }^{\text {ICC- }}$	Supply current from V_{CC}, output high	V ID $=10 \mathrm{mV}$,	No load	$25^{\circ} \mathrm{C}$		-4.1	-5		-4.1	-5	mA		

\dagger Unless otherwise noted, all characteristics are measured with BALANCE and BAL/STRB open and EMIT OUT grounded.
Full range for LM111 is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, for LM 211 is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, for LM 211 Q is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and for LM 311 is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
\ddagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 9. The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V with a pullup resistor of $7.5 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}}+$. These parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.
10. The strobe should not be shorted to ground; it should be current driven at -3 mA to -5 mA (see Figures 13 and 27).
switching characteristics, $\mathrm{V}_{\mathrm{CC}}^{ \pm} \mathrm{=} \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS			LM111 LM211 LM211Q LM311	UNIT
				TYP	
Response time, low-to-high-level output	$\mathrm{R}_{\mathrm{C}}=500 \Omega$ to 5 V ,	$C_{L}=5 \mathrm{pF}$,	See Note 8	115	ns
Response time, high-to-low-level output				165	ns

NOTE 11: The response time specified is for a $100-\mathrm{mV}$ input step with $5-\mathrm{mV}$ overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V .

TYPICAL CHARACTERISTICS \dagger

NOTE A: Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to $\mathrm{V}_{\mathrm{CC}}+$.

Figure 1

NOTE A: Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to $\mathrm{V}_{\mathrm{CC}+}$.

Figure 2

TYPICAL CHARACTERISTICS \dagger

Figure 3

[^0]
TYPICAL CHARACTERISTICS

Figure 4

Figure 5

TEST CIRCUIT FOR FIGURES 4 AND 5

TYPICAL CHARACTERISTICS

Figure 6

Figure 7

TEST CIRCUIT FOR FIGURES 6 AND 7

TYPICAL CHARACTERISTICS

Figure 8

Figure 9

Figure 10

APPLICATION INFORMATION

Figure 11 through Figure 29 show various applications for the LM111, LM211, and LM311 comparators.

Figure 11. 100-kHz Free-Running Multivibrator

Figure 13. Strobing

NOTE: Do not connect strobe pin directly to ground, because the output is turned off whenever current is pulled from the strobe pin.

NOTE: If offset balancing is not used, the BALANCE and BAL/STRB pins should be shorted together.

Figure 12. Offset Balancing

Figure 14. Zero-Crossing Detector

APPLICATION INFORMATION

\dagger Resistor values shown are for a $0-$ to $30-\mathrm{V}$ logic swing and a $15-\mathrm{V}$ threshold.
\ddagger May be added to control speed and reduce susceptibility to noise spikes
Figure 15. TTL Interface With High-Level Logic

Figure 16. Detector for Magnetic Transducer

Figure 17. 100-kHz Crystal Oscillator

APPLICATION INFORMATION

Figure 18. Comparator and Solenoid Driver

\dagger Typical input current is 50 pA with inputs strobed off.
Figure 19. Strobing Both Input and Output Stages Simultaneously

Figure 20. Low-Voltage Adjustable Reference Supply

Figure 21. Zero-Crossing Detector Driving MOS Logic

APPLICATION INFORMATION

Figure 22. Precision Squarer

Figure 23. Digital Transmission Isolator

Figure 24. Positive-Peak Detector

APPLICATION INFORMATION

Figure 25. Negative-Peak Detector

$\dagger R 1$ sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing dark current by an order of magnitude.
Figure 26. Precision Photodiode Comparator

\ddagger Transient voltage and inductive kickback protection
Figure 27. Relay Driver With Strobe

Figure 28. Switching Power Amplifier

Figure 29. Switching Power Amplifiers

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
JM38510/10304BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
LM111FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
LM111JG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
LM111JGB	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
LM211D	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211DE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211DG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211DR	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211DRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
LM211P	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM211PE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
LM211PW	ACTIVE	TSSOP	PW	8	150	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211PWE4	ACTIVE	TSSOP	PW	8	150	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211PWG4	ACTIVE	TSSOP	PW	8	150	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211PWR	ACTIVE	TSSOP	PW	8	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211PWRE4	ACTIVE	TSSOP	PW	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211PWRG4	ACTIVE	TSSOP	PW	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211QD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
LM211QDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM211QDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
LM211QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
LM311D	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM311DE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM311DG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM311DR	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
LM311DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS \&	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on

PACKAGE OPTION ADDENDUM
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{W}}$	Pin1 Quadrant
LM211DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM211DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM211PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM311DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM311DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM311PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM311PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM211DR	SOIC	D	8	2500	346.0	346.0	29.0
LM211DR	SOIC	D	8	2500	340.5	338.1	20.6
LM211PWR	TSSOP	PW	8	2000	346.0	346.0	29.0
LM311DR	SOIC	D	8	2500	346.0	346.0	29.0
LM311DR	SOIC	D	8	2500	340.5	338.1	20.6
LM311PSR	SO	PS	8	2000	346.0	346.0	33.0
LM311PWR	TSSOP	PW	8	2000	346.0	346.0	29.0

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AA.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

MECHANICAL DATA

PS (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
(
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

JG (R-GDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: \dagger Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

