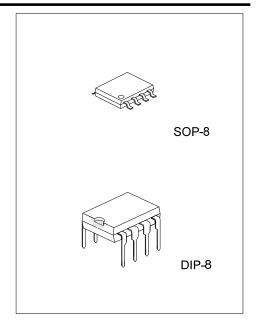
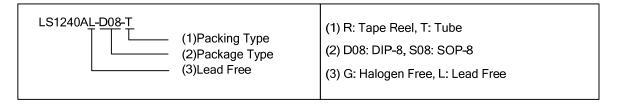
LS1240A

LINEAR INTEGRATED CIRCUIT

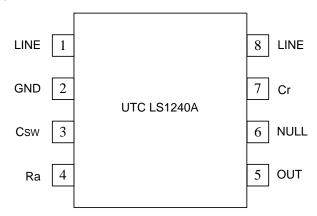

ELECTRONIC TONE RINGER WITH BUILT-IN BRIDGE **RECTIFIER**

■ DESCRIPTION

The UTC LS1240A is monolithic integrated circuits and designed to be as a telephone ringer. It can drive a piezo-ceramic converter(buzzer) directly. The output current capacity of UTC LS1240A is higher than standard ringer. For driving a dynamic loudspeaker, UTC LS1240A needs only a decoupling capacitor to replace the usual transformer in use.

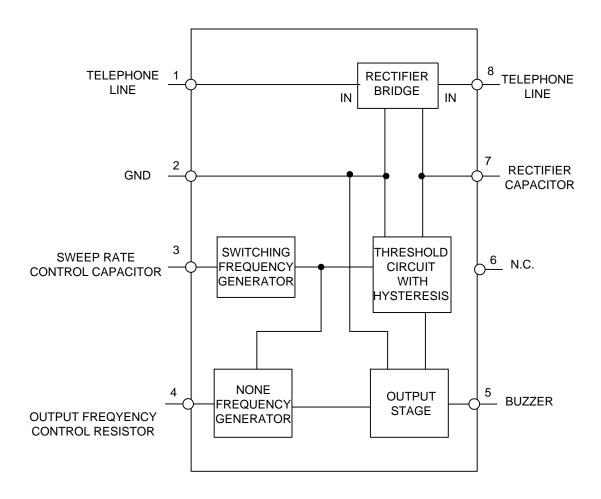

■ FEATURES

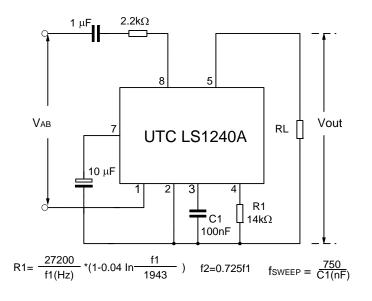
- * Low current consumption.
- * Integrated rectifier bridge with zener diodes to overvoltage Protection.
- * Minimum external circuitry.
- * Both frequencies of tone and switching are adjustable by external components.
- * Integrated voltage and current hysteresis.


ORDERING INFORMATION

Ordering Number		Dookogo	Doolsing	
Lead Free	Halogen Free	Package	Packing	
LS1240AL-D08-T	LS1240AG-D08-T	DIP-8	Tube	
LS1240AL-S08-R	LS1240AG-S08-R	SOP-8	Tape Reel	
LS1240AL-S08-T	LS1240AG-S08-T	SOP-8	Tube	

www.unisonic.com.tw 1 of 5 QW-R108-002.I


■ PIN CONFIGURATION


■ PIN DESCRIPTION

PIN	PIN NAME	DESCRIPTION		
1	LINE	Connecting pin to B-wire		
2	GND	Ground		
3	Csw	Sweep rate control capacitor		
4	Ra	Output frequency control resistor		
5	OUT	Buzzer		
6	NULL	Not connected		
7	Cr	Rectifier capacitor		
8	LINE	Connecting pin to A-wire		

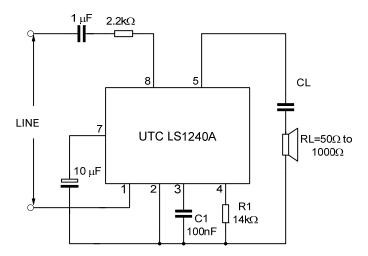
■ BLOCK DIAGRAM

■ TEST CIRCUIT

■ ABSOLUTE MAXIUM RATINGS

PARAMETER	SYMBOL RATINGS		UNIT	
Calling Voltage (f=50Hz) Continuous	$V_{AB_{\theta}}$	120	V_{RMS}	
Calling Voltage (f=50Hz) (5s ON/10s OFF)	V_{AB}	200	V_{RMS}	
Supply Current	I _{DC}	30	mA	
Operating Temperature	T _{OPR}	-40 ~ +70	°C	
Storage Temperature	T _{STG}	-65 ~ + 150	°C	

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	SOP-8	θ_{JA}	150	°C/W	
	DIP-8		100	C/VV	

■ ELECTRICAL CHARACTERISTICS (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vs				26	V
Current Consumption without load	I _B	V _S =9.3 to 25V		1.5	1.8	mA
Activation Voltage	V_{ON}		12		13.5	V
Sustaining Voltage	V_{OFF}		7.8		9.3	V
Differential Resistance in OFF Condition	R_D		6.4			kΩ
Output Voltage Swing	V _{OUT}			V _S -5		V
Short Circuit Current	I _{OUT}	$V_S=20V$, $R_L=250\Omega$		70		mA
AC OPERATION						_
Output Francisco (Va. 20)/ D4. 44kO)	f _{OUT1}	V ₃ =0V	1.55		2.53	kHz
Output Frequencies (Vs=26V,R1=14kΩ)	f _{OUT2}	V ₃ =6V	1.08		1.9	
Fout1/Fout2			1.33		1.43	
Programming Resistor Range			8		56	kΩ
Sweep Frequency		C1=100nF,R1=14kΩ	5.25	7.5	9.75	Hz

■ TYPICAL APPLICATION CIRCUIT

No current limitation is provided on the output stage of UTC LS1240A, so a minimum load DC of 50 ohms is advised.

The two tone frequencies generated are switched by an internal oscillator in a fast sequence and made audible across an output amplifier in the loudspeaker, both tone frequencies and the switching frequency can be externally adjusted. The signal and the circuit is designed so that noise on the line or variations of the ringing signal cannot affect correct operation of the device.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.