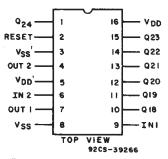


Data sheet acquired from Harris Semiconductor SCHS078C -- Revised October 2003

CD4521B Types

CMOS 24-Stage Frequency Divider

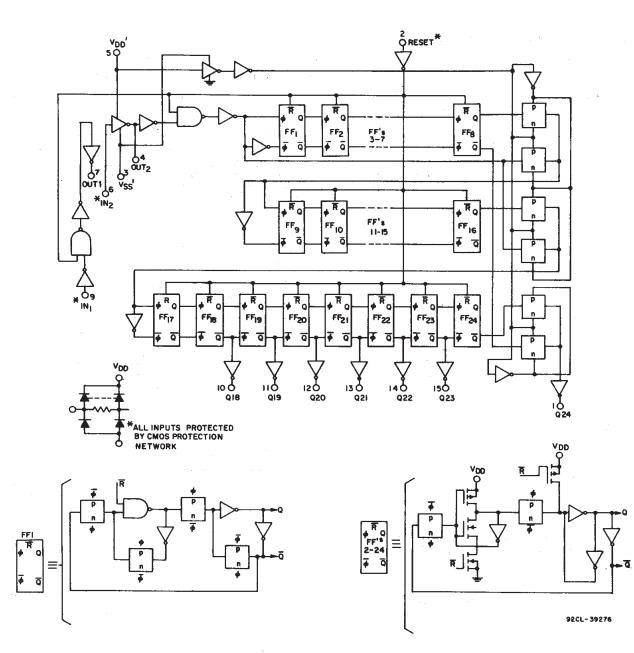
High-Voltage Types (20-Volt Rating)


Features:

- Reset disables the RC oscillator for lowpower standby condition
- Vod' and Vss' pins are brought out from the crystal oscillator to allow use of
- Maximum input current of 1 µA at 18 V over full package-temperature range: 100 nA at 18 V and 25° C
- Common reset

CD4521B consists of an oscillator section and 24 ripple-carry binary counter stages. The oscillator configuration (using IN1) allows design of either RC or crystal oscillator circuits. IN1 should be tied either HIGH or LOW when not in use. A HIGH on the RESET causes the counter to go to the all-0's state and disables the oscillator. The count is advanced on the negative transition of IN1 (and IN2). A time-saving test mode is described in the Functional Test Sequence Table and in Fig. 6.

The CD4521B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

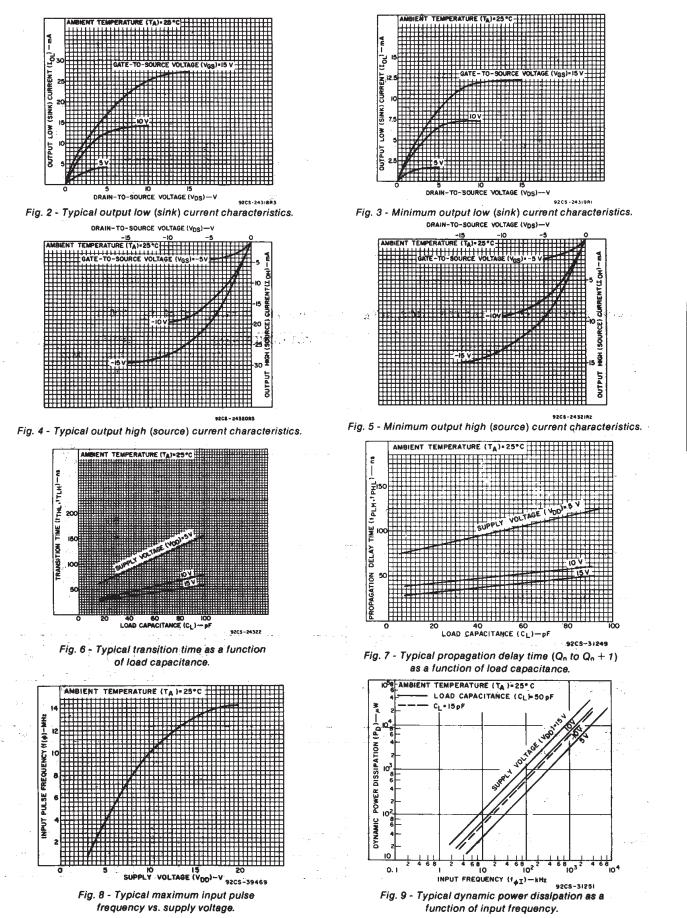

- 100% tested for 20-V quiescent current
- 5, 10 and 15 V parametric ratings
- Standardized symmetrical output characteristics
- external resistors for low-power operation
 Meets all requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series **CMOS Devices**"

TERMINAL ASSIGNMENT

OUTPUT	COUNT CAPACITY
Q18	218 = 262,144
Q19	219 = 524,288
Q20	220 = 1,048,576
Q21	2 ²¹ = 2,097,152
Q22	222 = 4,194,304
Q23	223 = 8,388,608
Q24	224 = 16,777,216

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (V _{DD})
Voltages referenced to V _{SS} Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (T _A)
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max

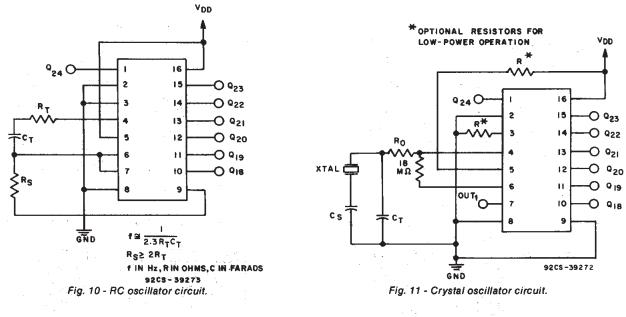
STATIC ELECTRICAL CHARACTERISTICS


CHARACTERISTIC	со	NDITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)								
	Vo	VIN	VDD	-55	-40	+85	+125		+25]	
· · · · · · · · · · · · · · · · · · ·	(V)	(V)	(V)					Min.	Тур.	Max.		
	—	0, 5	5	5.	5.	150	150		0.04	5	4	
Quiescent Device		0, 10	10	10	10	300	300		0.04	10	μΑ	
Current, IDD Max.	·	0, 15	15	20	20	600	600		0.04	20		
		0, 20	20	100	100	3000	3000		0.08	100		
Output Low (Sink)	0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	1`	_	1	
Current, IoL Min.	0.5	0, 10	10	1.6	1.5	1.1	0.9	1.3	2.6	···	- mA	
	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8			
	4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1			
Output High (Source)	2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2			
Current, IoH Min.	9.5	0, 10	10	-1.6	-1.5	1.1	-0.9	-1.3	-2.6			
	13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	—		
0		0, 5	5		0.	05		—	0	0.05		
Output Voltage:		0, 10	10		0.	05			0	0.05		
Low-Level, Vol Max.		0, 15	15		0.	05		·	0	0.05		
· · · · · · · · · · · · · · · · · · ·		0,5	5		4.	95		4.95	5		7	
Output Voltage:		0, 10	10		9.	95		9.95	10	_	1	
High-Level, V _{oн} Min.	_	0, 15	15		14	.95	-	14.95	15	—		
	0.5,4.5		5		1	.5		—	·	1.5	7 °	
Input Low Voltage,	1, 9	—	10			3				3	1	
V _{IL} Max.	1.5,13.5	_	15			4		<u> </u>		4	1	
	0.5,4.5		5		3	.5		3.5	_	·	1	
Input High Voltage,	1.9	_	10	1		7		7	_		1	
ViH Min.	1.5,13.5		15		1	1		11			1	
Input Current, I _{IN} Max.		0, 18	18	±0.1	±0.1	±1	±1	<u>† </u>	±10 ⁻⁵	±0.1	μA	

RECOMMENDED OPERATING CONDITIONS

5 (j) -

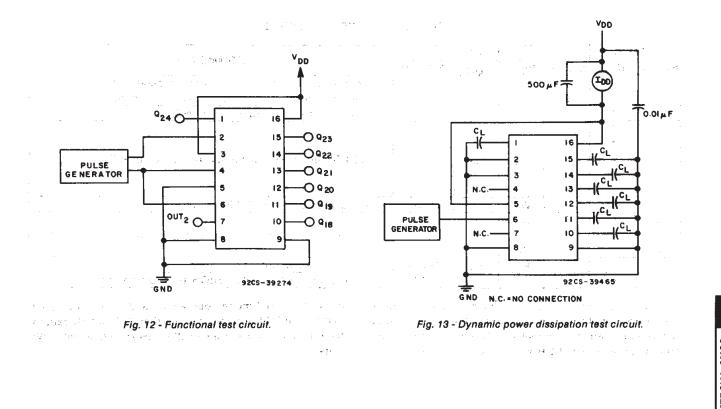
For maximum reliability, nominal operating conditions should be selected so that operating is always within the following ranges:

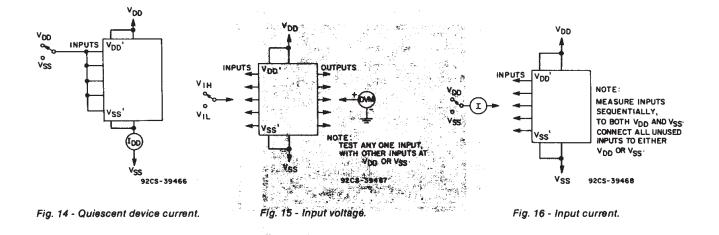

	VDD	LIN	UNITS		
CHARACTERISTIC	(V)	Min.	Max.	UNITS	
Supply-Voltage Range (For TA = Full Package-Temperatu	_	3	18	V	
		5	340	- T	
Input Pulse Width	tw ¢	10	150		
	and the second	15	120	_	
		5	180	-	ns
Reset Pulse Width	twin	10	80] _	
		15	50	Max. 18 2 5 6.5 15 15 10M 10M 10M 10M	
		5		2	MHz
Input Pulse Frequency	fφ	10	_	5	
		15		18 	
Litter - Adda		5	- 1	15	μs
Input Pulse Rise or Fall Time	tr∅,tr∅	10	_	15	
		15	-	15	
		5	1K	10M	
R _T Operating Range		10	1K	10M	Ω
		15	1K	10M	
	t.	5	15p	10M	
C _T Operating Range		10	15p	10M	F
		15	15p	10M	

COMMERCIAL CMOS HIGH VOLTAGE IC8

3

CD4521B Types

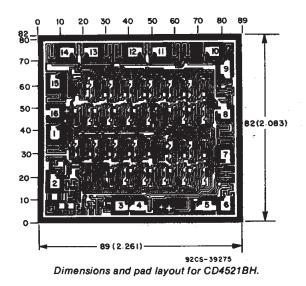



DYNAMIC ELECTRICAL CHARACTERISTICS, At T_A = 25° C; Input t_r,t_f = 20 ns, C_L = 50 pF, R_L = 200 Ω

011404075010750	÷	TEST CONDITIO	NS			UNITS	
CHARACTERISTIC			VDD(V)	Min.	Тур.	Max.	UNITS
Propagation Delay Time:	tPLH, TPHL		5	<u> </u>	4.5	9	
Input to Q18			10	. — .	1.7	3.5	
		1	15	·	1.3	2.7	
			- 5		6	12	- μs
Input to Q24			10		2.2	4.5	
	2		15	,	1.7	3.5	
			5	-	400	800	
Reset to Qn			10	·	170	340	
		· · · · · ·	15	· · ·	120	240	
Transition Time*	t _{THL} , t _{TLH}	1	5	<u> </u>	100	200]
•.		· ·	10		50	100	
		1 (A)	15	. <u> </u>	40	80	
Minimum Input Pulse Width	t _w ¢		5	·	170	. 340	- ns
			10		75	150	
		1	15	· · -	60	120	
Minimum Reset Pulse Width	t _{w(R)}	A a Ma	5		90	180	7
			10		40	80	
			15		25	50	
Maximum Input Pulse Frequency	fφ		5	2	4	—	
1. All 1.			10	5	10	_	MHz
and the second			15	6.5	13		
Input Pulse Rise or Fall Time	$t_r \phi, t_f \phi$		5		-	15	
			10			15	μs
			15	. —	1 ·	15	
Input Capacitance	CIN	Any Input		·	5	7.5	pF
R _T Operating Range		a ta a a	5	1K -	-	10M	
			10	1K	-	10M	Ω
			15	1K	— ⁻	-10M	
C _T Operating Range			5	15p	—	10µ	
		1	10	15p	-	10µ	F
		· · · · · · · · · · · · · · · · · · ·	15	15p	<u> </u>	10µ	
Maximum Oscillator Frequency		R _τ =1 KΩ	5	0.5	0.7	0.9	
· · ·		Ст=15 рГ	10	1.2	1.5	1.8	MHz
		Rs=30 KΩ	15	1.7	2.1	2.5	

*Not applicable for pin 4 (OUT2).

j.


*

COMMERCIAL CMOS

CD4521B Types

INPUTS			OU.	TPUTS		COMMENTS					
RESET	IN 2	OUT 2	V _{SS} '	VDD'	Q18-Q24						
	2					Counter is in three 8-stage sections in parallel mode.					
1	0	0	Voo	Vss	LOW	Counter is reset. IN 2 and OUT 2 are tied together.					
· 0	1	1	Voo	Vss		First LOW-to-HIGH transition at IN 2.					
	0	0			1						
	1	1		ŀ							
0	_	_	VDD	Vss		255 LOW-to-HIGH transitions are clocked in at IN 2.					
	-	_]		·					
	—	_									
0	1	1	VDD	Vss	HIGH	The 255th LOW-to-HIGH transition.					
0	0	0	Vod	Vss	HIGH						
0	0	0	Vss	Vss	HIGH	Counter is converted back to 24-stage serial-mode operation.					
0	1	0	Vss	VDD	HIGH						
0	1		Vss	VDD	HIGH	OUT 2 reverts to output operation.					
0	0	1	Vss	VDD	LOW	Counter ripples from an all-HIGH state to an all-LOW state.					

A test function, which divides, has been included to reduce the time required to test all 24 stages of the counter. Three sections are loaded in parallel to 255 counts, forcing all the outputs to be in the HIGH state. The counter is changed back to serial-mode operation and one additional LOW-to-HIGH transition is entered at IN 2, which causes the outputs to ripple from an all-HIGH state to an all-LOW state.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CD4521BE	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4521BE	Samples
CD4521BEE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4521BE	Samples
CD4521BM	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4521BM	Samples
CD4521BM96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4521BM	Samples
CD4521BM96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4521BM	Samples
CD4521BMT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4521BM	Samples
CD4521BNSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4521B	Samples
CD4521BPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM521B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

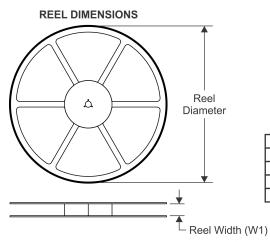
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

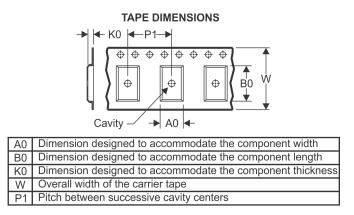
www.ti.com

10-Dec-2020

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

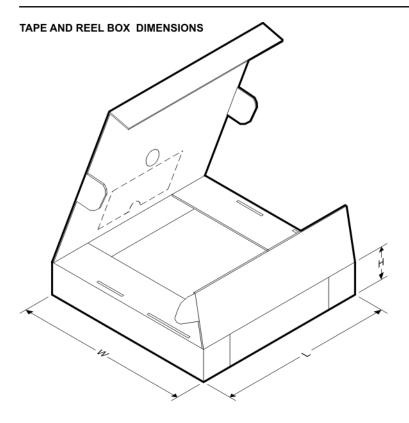

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All	dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	CD4521BM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	CD4521BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

17-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4521BM96	SOIC	D	16	2500	333.2	345.9	28.6
CD4521BNSR	SO	NS	16	2000	853.0	449.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

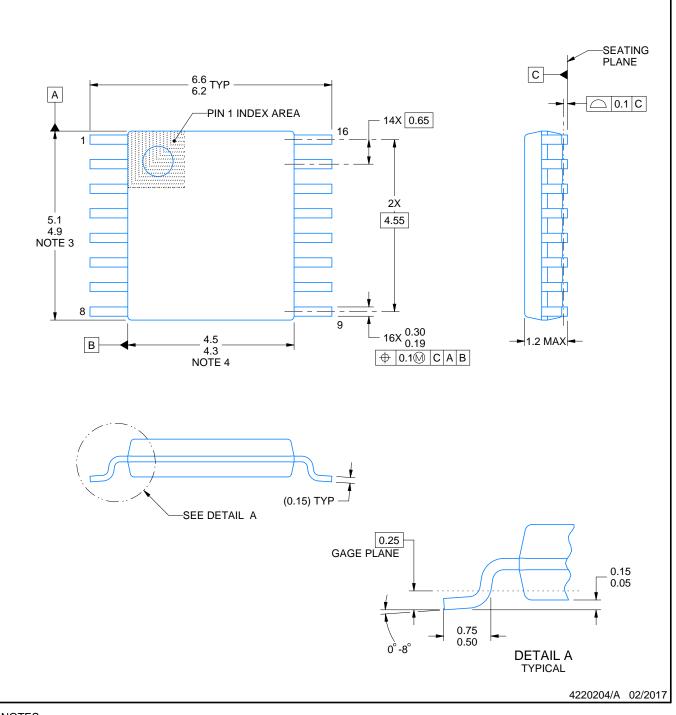
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

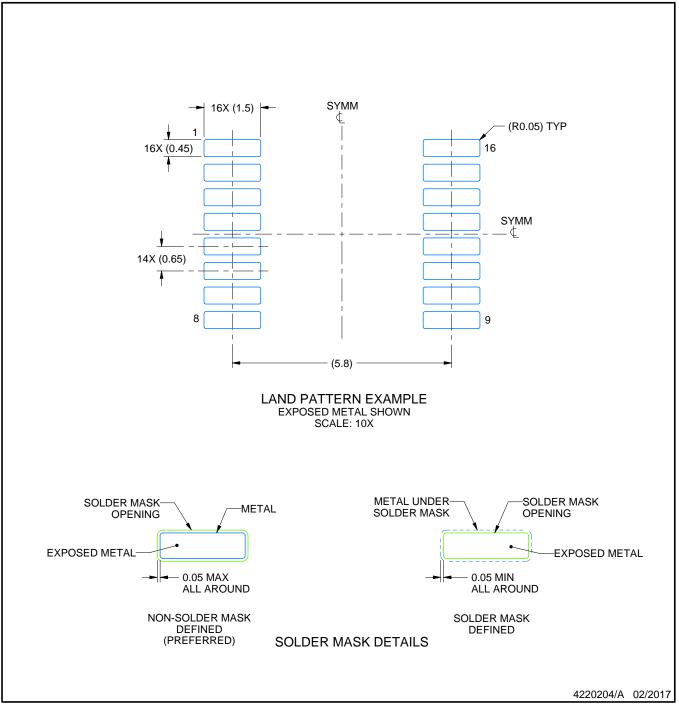
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

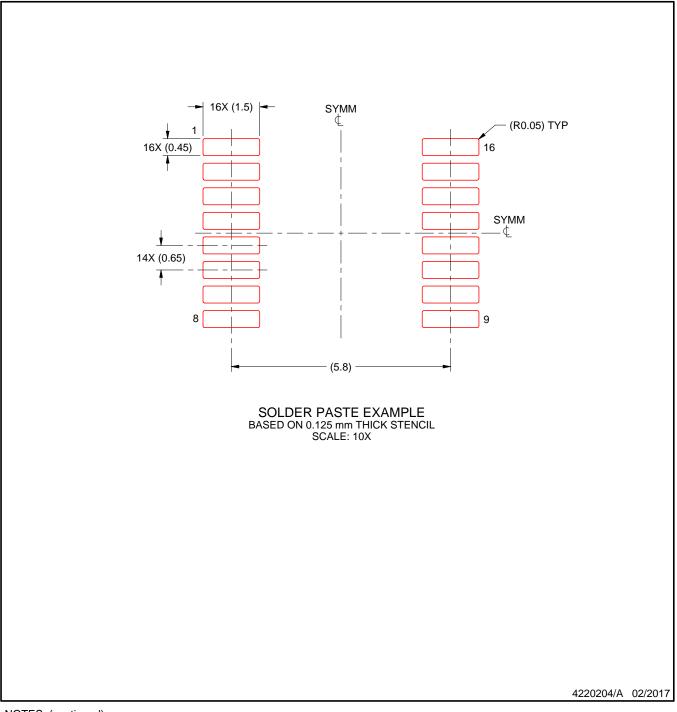
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated